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This article describes in some detail a proposed method of delivering the non-
imaging science data on the Mariner Jupiter/Saturn (M]S) mission at a bit error
probability which is substantially lower than the bit error probability required for
the imaging data. The method is a “pre-coding” of the nonimaging data with an

interleaved (24, 12) Golay code.

l. Introduction

It is well known that deep-space telemetry encoded
with a (32, 8) biorthogonal block code and decoded with
a maximum-likelihood decoder requires considerably less
energy to achieve a given bit error probability than telem-
etry that has not been encoded. Since 1969, all of JPL’s
Mariner-class spacecraft have been equipped with such a
coding system.

It is, however, also well known that short-constraint-
length convolutional encoding, coupled with Viterbi
decoding, is superior to biorthogonal coding. Thus, cur-
rent plans call for the replacement of the biorthogonal
code with a convolutional code on the Mariner Jupiter/
Saturn 1977 and later JPL deep-space missions. This
convolutional code will probably be either constraint
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length 7, rate 1/2, or constraint length 6, rate 1/3. Table 1
contains the bit signal-to-noise ratio E;/N,, required to
obtain the bit error probabilities 0.01, 0.005, and 0.001 for
uncoded, biorthogonally encoded, and convolutionally
encoded telemetry.

(It is seen from Table 1 that the (6,1/3) convolutional
code is about 0.5 dB better than the (7,1/2) code. How-
ever, future NASA deep-space telemetry will be trans-
mitted at rates on the order of 10° bits/s, and at such rates
the (6,1/3) code will generate 3 X 10° symbols/s as com-
pared to only 2 X 10° for the (7,1/2) code. The extra
bandwidth requirements and implementation difficulties
of handling such high symbol rates may force the adop-
tion of the (7,1/2) code in spite of its theoretically inferior
performance.)
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As has been the case on previous Mariner-class mis-
sions, the minimum bit error probability required for the
imaging data (i.e., the television coverage of the planets)
on M]JS is in the vicinity of 0.01-0.005. However, the
nonimaging data turn out to be much more susceptible to
noise than the TV. Final minimum bit error probabilities
required by the nonimaging scientific experiments have
not yet been set, but a commonly quoted upper bound is
5107,

Since the TV data will comprise over 95% of the total
M]JS telemetry, it would obviously be wasteful to deliver
the entire telemetry stream at a bit error probability of
5 X 105 in fact, it would require about 1.6 dB more
energy per transmitted bit to accomplish this. In this
article, we will document one feasible method of deliver-
ing the nonimaging MJS telemetry at the lower bit error
probability at a cost of only about 0.2 dB in signal power.
This is the method of concatenated, or nested, coding.
Specifically, the scheme we propose is the concatenation
of the short-constraint-length convolutional code with an
interleaved (24, 12) Golay code.

It should be mentioned that there arc at least two other
possible ways of efliciently delivering the nonimaging
data more reliably than the TV. The first is the use of
dual-channel telemetry, wherein the imaging and non-
imaging data streams are encoded independently and
frequency-multiplexed together. The second is the use of
lengthened-symbol encoding, in which the nonimaging
data bits are encoded into symbols which have, say, twice
the duration of the corresponding encoded TV bits. It is
not, however, our objective to weigh the relative merits
of these techniques against those of our concatenation
scheme.

II. Description of the Concatenation Scheme

Figure 1 is a gross block diagram of the Viterbi convo-
lutional coded telemetry system which is to be used on
M]JS. The output of the Viterbi decoder is an imperfect,
time-delayed version of the output of the data source.
According to Table 1, this system requires 0.3-0.8 less
energy per transmitted bit to achieve a bit error proba-
bility of 0.005 than does the (32, 6) biorthogonal coding
system.

Now let us regard the cncoder—channel-decoder en-
semble of Fig. 1 as a single block, and call it the super-
channel. From this viewpoint, the superchannel is a block
which accepts binary data and expels a noisy version of
those data. The idea of concatenated coding, as it applies
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to our problem, is to combat the noise of the superchannel
with coding; i.e., to insert a suitably chosen encoder—
decoder pair into the block diagram of Fig. 1, as shown
in Fig. 2.

It remains, of course, to describe in detail the contents
of the blocks labeled “superencoder” and “superdecoder.”
The code to be used on the Viterbi superchannel cannot
be expected to be a simple one, since the statistics of that
channel are very complicated. Indeed, no satisfactory
mathematical model for this channel exists at present,
and so, in order to verify that a particular coding scheme
actually performs adequately, extensive computer simula-
tion is necessary. Basically, however, what is needed is a
code which is capable of correcting relatively infrequent
bursts of errors, since experience has taught us that, at a
bit signal-to-noise ratio adequate to drive the Viterbi
decoder’s bit error probability down to 5 X 10+, the
errors, when they do occur, cluster in bursts of length
10-20 or so.

As mentioned in the introduction, we propose an inter-
leaved version of the (24, 12) Golay code. If the “depth
of interleaving” (an integer defined precisely below) is
denoted by k, then the supercode will be a (24k, 12k) block
code. That is, the nonimaging data stream will be parti-
tioned into blocks of size 12k, and to each such block will
be adjoined an additional 12k parity-check bits. Thus, the
superencoder of Fig. 2 will emit binary codewords of
length 24k. The description of the actual implementation
of the encoder will be deferred to Section V; here, it will
suflice to point out that if a 24k-bit codeword is denoted
by (x, x4, s, © © ©, Xour1), €ach of the k 24-bit subse-
quences (Xo, Xk, Xor, ***, Tagr)y (X1, Xty Xatewrs 5 Xaggrs)s
(Xk-1, Xok-1, © ° * , Xesrq) will turn out to be a codeword
of the basic (24,12) Golay code. Thus, the big 24k-bit
codeword consists of k Golay codewords which are
“interleaved.”

Now the (24, 12) Golay code, when decoded optimally,
is capable of correcting any pattern of three or fewer
errors, and many patterns of four errors. This fact makes
the overall (24k, 12k) an extremely powerful code for cor-
recting multiple bursts of bit errors: any pattern of bit
errors in a block of length 24k can be completely cor-
rected so long as rone of the k 24-bit Golay codewords
out of which the overall codeword has been constructed
contains more than three of the bit errors. Thus, in par-
ticular, if all the bit errors are confined to a “burst” of
length 3k or less, no individual Golay codeword can con-
tain more than three of the errors, and so all of the errors
will be corrected. Of course, many other more complex
patterns of bit errors will be corrected also.
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Thus, the Viterbi decoder produces many complex com-
binations of bursts of errors, and the interleaved Golay
code is capable of correcting many complex combinations
of bursts of errors. The next section presents quantitative
verification that the code and the channel are indeed well
matched.

I1l. Simulation Results

We have simulated the performance of our concatena-
tion scheme with the aid of bit error statistics obtained
from a commercially manufactured (7,1/2) Viterbi de-
coder, and from a software (6,1/3) Viterbi decoder. The
(7,1/2) statistics were stored on two reels of magnetic
tape. One reel contained 1.3 X 10% bits which were de-
coded at an E;/N, of 2.5 dB, and a resulting bit error
probability of 6.2 < 10-*. The other reel had 9.9 X 107
bits, E,/N, = 2.0 dB, P, (bit) = 1.8 X 10-%. The (6,1/3)
statistics were stored on one reel of magnetic tape con-
taining 6.4 X 10° bits decoded with E,/N, = 1.9 dB,
P (bit) =5X107%, and 6.4 X 10¢ bits with E;/N, = 1.5 dB,
P;; (bit) = 10-2* The interleaving depths k = 12, 16, 20, and
24 were all tested.

In addition, four different versions of the decoding
algorithm were tested. The reason we did not settle on
one decoding algorithm is that the Golay code is, in fact,
a (23,12) rather than a (24,12) code. The 24th bit of
each codeword is merely an overall parity-check bit. And
while, for the (23,12) code, an algorithm which corrects
any pattern of three or fewer errors can neither correct
nor detect any error pattern of more than three errors,
the extended (24, 12) code has the ability to detect and
correct many patterns of four errors. It was our desire to
test several combinations of detection and correction
which are possible with the extended code.

The four decoding rules will be denoted by Al, A2,
B1, B2. Roughly speaking, A denotes an algorithm which
only corrects patterns of up to three errors, and B denotes
an algorithm which corrects not only all patterns of three
or fewer errors but also many likely patterns of four
errors. The algorithms labeled 1, when confronted with
an error pattern that cannot be corrected, make no change
in the received bits but merely pass them along un-

1There is a small discrepancy between these figures and those of
Table 1 because it is not feasible to implement maximum-
likelihood survivor selection at high bit rates. The faster, subopti-
mum Viterbi decoder is slightly less efficient. The reader interested
in details should consult Ref. 1.
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processed. Those labeled 2 “erase” all the bits in a code-
word which appears to have suffered an uncorrectable
error pattern. Details of these algorithms will be given
in the next section; we conclude this section with per-
formance tables of algorithms Al, A2, B1, and B2 for the
interleaving depths k = 12, 16, 20, and 24,

There are two sets of numbers for each algorithm: those
labeled (0.0062,0.005) and those labeled “(0.018,0.01)”.
The first entry in a pair under a (0.0062, 0.005) rubric rep-
resents an error or erasure probability for the concatena-
tion scheme combined with the (7,1/2) Viterbi decoder
with bit error probability 6.2 X 10-%; the second entry
gives the same probability for the scheme combined with
the (6,1/3) decoder with a raw bit error probability of
5 < 10-*. The entries under (0.018,0.01) have the same
significance for the higher bit error probabilities 1.8 X 10~
for the (7,1/2) code and 1.0 X 102 for the (6,1/3) code.
A condensed exponential notation is used; e.g., 1.7E-2
denotes 1.7 X 10->. Error probability is denoted by Py
and erasure probability by P.z. Probabilities marked with
an asterisk (*) were computed from less than 10 error
events and so may not be reliable.

Algorithm Al
(0.0062,0.005) 12 (18E-4 1.4E-4) (5.8E-3,2.9E-3)
16 (BOF-547E5) (34E-3,2.1E-3)
20  (3.3E-5,17E-5) (2.2E-3,1.5E-3)
24  (19E-5,8.1E-6) (1.7E-3,9.0E-4)
(0.018,001) 12 (L5E-3,68E-4) (3.6E-2, 1.2E-2)
16 (8.0E-4,34E-4) (3.0E-2,10E-2)
20  (49E-4 16F-4) (25E-2,84E-3)
24 (3.5E-4,8.0E-5) (2.4E-2 6.3E-3)
Algorithm B1
(0.0062,0.005) 12 (LOE-4,6.7E-5) (2.5E-3,14F-3)
16 (3.9E-5,23E-5) (15E-3 9.6E-4)
20  (2.3E-5,87E-6) (12E-3,4.5E-4%)
94 (14E-5,44E-6) (1.0F-3,36F-4)
(0018,001) 12 (LOE-3,43E-4) (2.1E-2,7.3E-3)
16 (60E-4, 19E-4) (1.8E-2 57E-3)
20  (39F-4, 1.0E-4) (L7E-2,5.1E-3)
24 (3.1E-4,55E-5) (1.8E-2,3.8E-3)
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Algorithm A2

k Py (bit) Py (block) Py (block)
(0.0062, 0.005) 12 (1.1E-5,7.5E-6) (2.8E-4, 1.8F-4) (5.5E-3,2.7E-3)
16 (2.5E-6, <E-Tx) (LOE-4, <E-5+) (3.3E-3, 2.1E-3)
20 (1.3E-6, <E-T+) (6.9E-4, <E-5¢) (2.2E-3, 1.5E-3)
24 (6.6E-7, <E-T+) (4.8E-5, <E-5¢) (1.7E-3,9.0E-4)
(0.018,0.01) 12 (7.9E-5, 1 4E-5) (2.1E-3, 3.6E-4%) (35E-2, 1.2E-2)
16 (3.6E-5, 1.3E-6%) (1.4E-3, 6.0E-5¢) (2.8E-2, 1.0E-2)
20 (1.8E-5,5.0E-6) (9.4E-4, 3.0E-4+) (2.4E-2, 8.1F-3)
24 (1.3E-5, 1.3E-6x) (9.1E-4, 9.0E-5+) (2.3E-2, 6.2F-3)
Algorithm B2
(0.0062, 0.005) 12 (5.0E-5, 4.1E-5) (1.3E-3,9.0E-4) (12E-3, 49F-4)
16 (2.1E-5, 1L1E-5) (7.5E-4, 3.6F-4%) (7.1E-4, 6.0E-4)
20 (1.2E-5, 3.7E-6) (5.8E-4, 1.5E-4) (6.3E-4, 3.0F-4)
24 (6.2E-6, 2.5E-6) (4.1E-4, 1.8E-4«) (6.3E-4, 1.8E-4)
(0.018,0.01) 12 (3.6E-4, 1.6E-4) (9.4E-3, 3.3E-3) (L2E-2, 4.0E-3)
16 (2.0E-4, 5.3E-5) (7.3E-3, 2.0E-3) (1.1E-2, 3.8E-3)
20 (1.3E-4, 4 6E-5) (6.1E-3,2.1E-3) (1.1E-2, 3.0E-3)
24 (1.1E-4, 1.9E-5) (6.4E-3, 1.3E-3) (1.1E-2, 2.6E-3)

IV. Conceptual Description of the
Decoding Algorithm

All of our decoding algorithms for the (24, 12) extended
Golay code can be summarized as follows:

(1) Accept new 24-bit word.

(2) Calculate the 12-bit syndrome s for the received
24-bit word.

(3) Find the entry opposite s in the (previously calcu-
lated) syndrome table.

(4) If this entry is a 24-bit error pattern, add (mod 2)
this pattern to the received word, and output the
resulting 24-bit word. If the entry is the special
symbol  output the received word unprocessed
for algorithms A1 and B1, or erase all 24 bits of the
received word for algorithms A2 and B2.

(5) Go to step 1.

The above skeleton completely describes the algo-
rithms, except for the syndrome table. The rest of this
section will be devoted to a description of this table. We
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will begin with an outline of the theory of decoding a
general linear code, and then specialize to the extended
Golay code.

Any (n, k) linear code can be characterized as the set of
binary n-tuples ¢ = (ci, ¢1, * * -, ¢a-y) which satisfy the
matrix equation

cH=0

where H is a fixed n X (n — k) binary matrix of rank
n — k. Now we define the syndrome s for an arbitrary
binary vector v of length n by the equation

vH = (1)

The syndrome s is an n — k dimensional binary vector.
For a fixed syndrome s, the set of vectors v which satisfy
(1) is called a coset of the code C; each such coset contains
2* n-dimensional vectors. It turns out that if a codeword ¢
is transmitted over a noisy channel, and if v is received,
the error pattern, i.e., the difference v — ¢, must lie in the
coset defined by (1). For any coset of the code, certain
vectors in that coset are at least as likely to turn up as
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error patterns as any of the others. In such a case, one of
these likely vectors may be designated as a coset leader;
in most applications, the coset leader is chosen from
among the vectors of least weight in the coset. In the
decoding algorithm, when a vector is received whose coset
has a leader, that leader is added modulo 2 to the received
vector, and the resulting vector is the output of the de-
coder. If the received vector belongs to a coset without a
designated leader, the received bits are either unprocessed
or are erased by the decoder. These two alternative ways
of handling the leaderless cosets correspond to the algo-
rithms of types 1 and 2 described in the last section.

To complete the description of our decoding algorithms
for the (24, 12) extended Golay code, then, we must indi-
cate how the coset leaders were chosen.

The first step was to ensure that all error patterns of
weight 0, 1, 2, or 3 would be corrected. Thus, each of these

24 24 24 24
() (1) () (5) =
low-weight error patterns was designated as a coset
leader. (It is a fundamental fact about the Golay code that

no two of these vectors lie in the same coset.) For the
algorithms labeled A, no other cosets were given leaders.

For the algorithms labeled B, however, we used some
of the remaining 1771 cosets to correct certain common
error patterns of weight 4. Since

1 /24
1771»—*(‘,)‘<4>

it is clear that we could hope to correct at most one-sixth
of all patterns of weight 4. Indeed, each of the 1771
remaining cosets contains exactly six vectors of weight 4,
and those six vectors are “disjoint” in the sense that their
modulo-2 sum is 111111111111111111111111. Fortunately,
however, it turns out that among the 10626 weight-4
error patterns that appear in the interleaved Golay code
in the presence of “Viterbi noise,” only a small fraction
occur with substantial probability. These are the “tame”
patterns, in which the four ones are confined to one
or two short bursts; i.e., the 651 patterns of the form
L1t 1110010 and L 1T 1T

For example, for the twelve-fold interleaved Golay code,
and the tape of (7,1/2) Viterbi noisc at a bit error proba-
bility of 6.2 X 10-%, 4030 of the 5529504 processed Golay
codewords suffered exactly four bit errors, and 3187 of
these were of the tame variety described above. (In fact,
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pattern 1111 occurred 1322 times, 33% of the total; and the
tame patterns of overall burst length == 7 accounted for
58% of the total.)

Thus, in the B algorithms, we wanted as many of the
tame weight-4 error patterns to be coset leaders as pos-
sible. This was done (by computer) by generating the 631
tame patterns sequentially, in order of increasing burst
length, computing the syndromes, and making the pattern
a coset leader if its coset was leaderless at the time it was
being examined. It turned out that we could make 542 of
the 651 tame patterns coset leaders. (The shortest tame
pattern which belongs to the same coset as an even shorter
tame pattern, and so cannot be corrected, is 1000111. Thus,
the probability of a tame pattern being corrected is sub-
stantially higher than 542 /651 = 0.833).

Finally, a further study of the weight-4 error patterns
failed to reveal any particular class of pattcrns which
occurred a disproportionate number of times, and so we
chose no other coset leaders. Hence, in the B algorithms,
9867 of the cosets had leaders, and 1229 did not.

V. Implementation—Encoding

It is possible to take advantage of the fact that the basic
(23,12) Golay code is cyclic to design a very simple en-
coding circuitry for the k-fold interleaving of the extended
(24, 12) Golay code. Figure 3 is a diagram of one possible
encoding configuration. The 12k data bits are sent down
the channel and into the shift register, with the four
switches in the “up” position as shown. The switches are
then put in the “down” position, the 12k parity-check bits
are sent down the channel, and the shift register is filled
with zeros. The switches are then returned to the “up”
position, and the transmission of a new block begins.

For k in the range 12-24, the circuit of Fig. 3 could be
built with 20 or so standard metal oxide semiconductor
(MOS) integrated circuits at a cost of less than $100; alter-
natively, it could be put on one specially ordered inte-
grated circuit, although this would increase the cost
considerably.

Finally, let us note one very important feature of the
encoder of Fig. 3: Although the overall 24k-bit codewords
consist of k interleaved 24-bit codewords, the data bits
are not interleaved but appear serially in the encoded
stream in blocks of 12k separated by blocks of 12k parity-
check bits.
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VI. Implementation—Decoding

The decoding algorithms we used were software algo-
rithms, written for an SDS 930 computer. However, we
shall argue at the end of this section that at least some of
the computation would be better done with relatively
inexpensive special-purpose hardware.

We assume that the 24k-bit word which is to be decoded
has somehow been loaded into the computer. The de-
coder’s first task is to “de-interleave” the k component
Golay codewords. Thus, if (Yo, 1, Y2, * * * , Your) is the
received word, the first decoding step is to arrange the bits
into k 24-bit words, as follows:

Word 1

Yo, Yo, Yok 7 5 Youk
Word 2 Yo, Yk, Yohwr, 7 7 5 Yosknr
Word k Y, Yorors Yakns 0 0 5 Yoak

(Notice that at this stage, the data bits have been scram-
bled.) Next, each of the k 12-bit words is decoded, as indi-
cated in Section IV; i.e., the syndromes are calculated, and
the error patterns (coset leaders) corresponding to each
syndrome are added modulo 2 to the received words. For
the B algorithms, this will require a stored table of 4096
12-bit words (12 rather than 24, because the last 12 bits of
each Golay codeword are not carrying information, only
noise-combating parity). However, for the A algorithms,
we need only a syndrome table of 2048 12-bit words,
since a word from the (24, 12) code is merely a word from
the (23, 12) code to which has been appended an overall
parity check. Thus, every codeword in the (24,12) code
has even weight (i.e., an even number of ones), and so the
parity of the number of errors that have occurred in a
24-bit word is the same as the parity of the number of
ones in that word. This leads us to the following modified
version of the decoding algorithms:

Al. Compute the 11-bit syndrome for the first 23 bits,

regarded as a noisy version of a codeword from the
(23, 12) code.

A2, Find the 23-bit error pattern of weight 0, 1, 2, or 3
corresponding to the syndrome calculated in A2.

A3. If the error pattern found in A3 has the same parity
as the received 24-bit word, add the error pattern
to the first 23 bits. Otherwise, the decoding algo-
rithm has detected four or more errors.

This version of the algorithm requires the storage of only
2048 13-bit words (12 bits of the error pattern and one
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extra bit which gives the parity of the complete 23-bit
error pattern). Thus, if computer storage is at a premium,
the A algorithms enjoy a considerable advantage over the

B algorithms.

In any event, when the k 24-bit words have been de-
coded, the result will be k blocks of corrected data:

Corrected word 1 Xo, Xy, - -, X
Corrected word 2 Xy, Xan, 5 Xukn
Corrected word k X, Xoren, + 0, Xy

Each X; is the decoder’s estimate of the corresponding
transmitted bit X;, or a special erasure symbol. The final
decoding step is the re-interleaving of the k words to get
the corrected data stream X, X;, - - -, X,o1.

The program we have written to do this decoding on
the SDS 930 reads the incoming codewords from magnetic
tape, and can process the data at a rate of 6000 (informa-
tion) bits/s. This rate is well in excess of the currently

estimated nonimaging science cncounter data rate of
4500 bits/s.

Although current plans call for software implementation
of the decoding algorithm, we cannot conclude this report
without making some mention of the advantages of hard-
ware decoding. We have found that over 70% of the decod-
ing time in our program is devoted to the de-interleaving
and re-interleaving of the k 24-bit Golay codewords, and
that most of the remainder of the decoding time is con-
sumed in computing the k 12-bit syndromes. Both of these
operations are quite awkward in most assembly languages
but could be implemented almost trivially with a handful
of standard MOS integrated circuits. If outboard circuitry
for performing these two functions became available, the
entire decoding algorithm would make a negligible de-
mand on the computer’s central processing unit (CPU)
time. The only remaining burden would be the large table
of 2048 or 4096 13- or 12-bit words. This table could
easily be stored on a special-purpose read-only memory
(ROM), making the entire decoder disjoint from the main
computer.

However, a final decision on the software-hardware
question must be deferred until a careful study of the
various tradeoffs (available computing power, reliability,
expense, etc.) involved can be made.
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Table 1. E»/No (in dB) required to produce certain bit error
probabilities for four telemetry systems

: (7,1/2) (6,1/3)
rBi)t el})l;'ﬁ)tl;es Uncoded bi (‘E}%’ G)n | convolu- convolu-
proba lorthogona tional tional
0.01 4.3 2.3 2.3 1.7
0.005 5.2 2.9 2.6 2.1
0.001 6.8 4.0 3.2 2.7
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Fig. 3. Encoder for k-fold interleaving of Golay (24, 12) code
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